通信工程系

李明玉

 

姓名:李明玉

职称职务:教授、博士生导师。

社会兼职:IEEE   member. 同时担任IEEE Tran. MTTIEEE Tran. CAS-IIEEE   Tran. SPInternational Journal of RF and Microwave CAEIEEE   access等国际期刊审稿人.

学科领域

信息与通信工程、电子科学与技术

招收博士研究生专业&研究方向

● 智能射频技术与集成系统

● 无线通信电路、信号与系统

● CMOSMMIC集成电路设计

招收硕士研究生专业&研究方向

● 5G/6G大容量无线通信核心算法及DSP/FPGA实现技术

● 新一代无线通信宽带高效线性发射机技术

● 无线通信中的功率放大器设计及MMIC射频集成理论研究

● 高速卫星通信电路与系统设计方法研究

●  CMOS集成电路设计

通信地址

重庆市沙坪坝区沙正街174  邮政编码:400044

重庆大学微电子与通信工程学院

E-mail:   myli@cqu.edu.cn      QQ121509443

 

个人简介

        

李明玉,男,教授、博士生导师。200912月毕业于电子科技大学电路与系统专业,获工学博士学位,随后在重庆大学微电子与通信工程学院从事教学和科研工作。20128—20158月在日本北九州市立大学早稻田大学信息情报与系统LSI联合实验室任特任研究员,从事数模混合集成电路的设计研究。20199月获评博士生导师,20219月获评教授。长期从事无线及卫星通信电路、信号与系统的研究及设计工作,创建了重庆大学智能无线技术及集成系统团队(团队现有教师6名、硕博士在校生80多名),率先在重庆大学开展了微波有源电路设计及中射频系统领域的研究,先后主持或主研承担或完成了多项国家级、省部级和横向科研项目的研究工作。科研团队在关于大容量高频段无线传输及卫星通信等项目竞标中,取得了多次全国第一的好成绩,在高速无线传输领域代表着国内第一阵营。

先后担任了研究生、本科生的《智能无线电及集成系统》、《移动通信系统》、《通信交换技术》、《软件无线电》、《通信电子线路》等课堂教学及实验环节的指导工作,指导本科毕业学生多名,指导硕士、博士研究生多人。

学生培养:   

本课题组研究方向属于工程应用基础研究,研究生培养注重工程实际和理论知识结合,硕士阶段重点锻炼学生射频模拟电路设计、集成电路芯片设计理论、DSP/FPGA算法及无线传输系统实现等基本能力,为继续深造或就业打下良好基础。近年来,课题组发展势头良好、经费充足,先后购置了大量高端芯片及开发电路,如Cree公司氮化镓功放芯片、Xilinx公司V7K7Vu9PZYNQ系列等FPGATI公司C6000系列DSP芯片、ADIE2V公司超高速AD/DA采样芯片(速率可达10Gsps以上)、ADI公司高度集成芯片AD9361/AD9371/AD9375/   ADRV9009/AD9081等高度集成收发信机,团队具备从编码调制、DA转换上变频、功放发射至射频接收、AD采样、译码解调等完整的物理层链路算法实现及电路设计能力。本实验室长期与中国航天科技集团、中国航天科工集团、中国电子科技集团、中国船舶、华为中兴等多个国内一流企业及研究所保持良好的合作研究关系,具备良好的试验条件和实验设备,并可推荐优秀毕业生去合作单位实习与工作,为学生的迅速成长提供良好平台。

研究生通过参与相关项目,培养质量持续提升并保持高质量就业,毕业生就业单位主要是面向国内一流研究所和大公司。近年来培养的从事无线传输、集成电路及通信系统设计的研究生供不应求,大多进入头部企业或一流研究所从事信息系统及集成电路的设计工作。

      

   欢迎有志于从事宽带无线通信、卫星通信及模拟集成电路设计的同学报考本实验室硕士及博士研究生,同时长期招收相关领域博士后。

 

研究领域:

在学术研究领域,共发表SCI论文80多篇,主要工作如下:1)超宽带高效功率放大器新型架构及可解析设计理论研究。开展了实频技术、后匹配技术等宽带电路匹配技术的研究,解决了跨多倍频程Doherty功放的设计难题,可为5G/6G及卫星通信的发射机架构提供新的设计思想和解决方案;2)无线传输及超宽带功率放大器数字预失真理论研究。深入开展了基于压缩感知理论、机器学习理论和人工智能算法基础的功放行为建模及预失真技术研究,并具备高速调制解调、高速盲均衡、扩跳频系统设计工程化实现能力,取得了系列成果。3)集成电路设计理论研究。为应对高频高效的无线通信需求,开展了基于氮化镓工艺的高效宽带功放芯片和CMOS数模混合集成电路设计研究,分别对Sub-6 GHz下的5G小基站需求、5G毫米波频段和E波段毫米波的功放及射频集成芯片进行了电路仿真、版图设计和流片加工,并且与国内外知名研究机构进行联合设计及流片加工。4)超高速飞行器通信链路大动态捕获与综合抗干扰技术研究。针对超高速飞行器通信高速数据链、宽带传输等高动态场景下,传统波形传输效率低,无法抵抗快速衰落信道、大多普勒频偏以及突发强干扰的问题,研究基于飞行器通信的新型传输方法和抗干扰措施,突破高频谱效率时延-多普勒域信号波形设计、高超声速飞行器多载波高阶混合并行组合扩频信号捕获和跟踪、低复杂度信号波形信道估计与均衡、飞行器终端综合抗干扰等关键技术,构建基于高干信比条件下高超声速信号传输系统原理样机,为未来高速率、高可靠飞行器通信提供技术支撑。

 

主要研究方向一: 5G/6G大容量无线通信核心算法及嵌入式DSP/FPGA实现技术研究

   围绕宽带无线传输中的高效数字调制解调技术开展研究工作,主要侧重于全数字解调的理论和算法研究,更多关注通信最佳接收机理论的全数字化问题,主要的研究目的在于用现代信号处理算法解决OFDM/MQAM4G/5G移动通信系统及卫星通信系统中核心传输问题。主要研究内容包括:OFDM/MQAM高效数字调制技术、同步参数估计算法、信道估计技术、全数字下变频技术、全数字接收机的硬件结构以及相应的DSP/FPGA嵌入式实现技术等。本研究方向培养的毕业生可进入华为中兴等设备商以及中国航天、中国电科旗下等一流研究院所等单位,还可去国际一流名校进一步深造。

主要研究方向二:新一代无线通信宽带高效线性发射机技术

   围绕第四代和第五代移动通信系统、宽带卫星通信系统、军用宽带无线传输系统以及软件无线电技术开展研究工作。主要研究用于新兴通信系统的可重构、自适应宽带射频前端,包括如下的几个方面:可重构多带和多标准射频前端、软件定义的射频前端和宽带射频前端、低IF发射机和接收机、超外差发射机和接收机、极坐标和笛卡尔直接变换发射机和接收机等。开发用于软件可配置的下一代无线通信发射机和接收机中的高级数字信号处理技术和算法,具体研究内容包括宽带通信中功率放大器行为模型与自适应数字预失真技术、射频前端损害校正(IQ不平衡、动态非线性信道均衡等)、噪声和干扰抑制技术、自适应滤波技术、峰均功率比减少技术以及使用DSP/FPGA开发平台的高级数字信号处理算法实现等。以上研究方向需要数字信号处理算法以及射频电路设计的综合知识以及联合设计技术,是目前国际同行研究的热点,也是无线通信未来数十年发展的趋势。本研究方向培养的毕业生就业可进入华为中兴等设备商以及中国航天、中国电科旗下等一流研究院所等单位,还可去国际一流名校进一步深造。

主要研究方向三:无线通信中的功率放大器及MMIC射频集成电路理论设计研究

       无线通信系统中的射频微波电路设计、MMIC射频集成电路设计、电路行为建模和线性化技术。射频微波电路尤其功率放大器作为无线通信系统中最重要的部件,是目前尤其是下一代无线通信、卫星通信系统关注的重点和热点方向之一,本研究主要目的在于从电路级到系统级的设计方法上去开发和功率放大器设计以及功率效率优化相关的基本研究。主要研究内容包括宽带高效线性功率放大器电路设计理论、超宽带功率放大器匹配技术以及相关的无源电路设计,在此基础上完成收发信机整机MMIC射频集成电路设计。本研究方向培养的毕业生就业可进入华为中兴等设备生产商以及中国航天、中国电科旗下等一流研究院所等单位,还可去国际一流名校进一步深造。

主要研究方向四:CMOS集成电路设计

        该方向采用近代物理学和电子科学技术的基本理论、方法及实验手段,研究适应于新型无线传输系统的高性能功率发射电路、电源管理模块及芯片、谐振及射频前端器件和电路及其系统化与功能集成化等内容,重点发展高速传输、高效率能量转换、高集成度信息传输和处理的新理论新方法和新技术,并在高效率无线能量传输、转换及收集系统中推广应用。本研究方向培养的毕业生可在集成电路设计等相关企业及研究所就业。

科研项目方面:   

团队名称:智能无线技术与集成系统团队

科研团队主要围绕大容量及相控阵无线传输系统中的电路设计、信号处理及工程实现开展研究工作,相关项目涉及微波有源电路及芯片设计、高速软件无线电硬件平台、测控高速数据无线传输、大容量毫米波通信、超宽带数字预失真、电源管理模块及芯片设计等领域。近年来主持了国家自然科学基金面上项目、装发预研等国家级部委纵向项目5项,以及华为、中兴和各大研究所等企事业单位横向项目等十余项,团队累计到位项目经费两千多万。提出了若干新的大容量无线传输信号处理技术、新型高效射频功放架构、功率电路新型效率提升技术等,研制出了具有国内一流水平的多种实物硬件电路,并创建了重庆大学智能无线技术及集成系统团队,在微波有源电路设计领域、无线传输中射频系统领域、集成电路设计、FPGA信号处理、功率电子电路领域等进行了深入研究,取得了系列科研成果。

 

代表性学术成果:

期刊论文:

一.论文

----2025-----

 

1) Liu, K;   Shi, WM*; (...); Li, MY. Symmetrical Doherty Power Amplifier With   Extended Bandwidth and Back-Off Range Based on Nonlinear Current Profile.   IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 72,   no. 7, pp. 3204-3214, Jul. 2025.

2) Li, ZY;   Dai, ZJ* ; (...); Li, MY. A Consistency Enhancement Technique for   MIMO Power Amplifier Modules. IEEE Transactions on Circuits and Systems I:   Regular Papers, vol. 72, no. 6, pp. 2928-2941,Jun. 2025.

3) Gao, RB   ; (...); Li, MY; (...); Pang, JZ*; . Modified Three-Way   Doherty Power Amplifier Design Using Simplified Transistor Model Assisted   Optimization for Ultra-Wideband Applications. IEEE JOURNAL OF MICROWAVES,   vol. 5, no. 3, pp. 711-725, May. 2025.

4) Zhang,   Y; Pang, JZ*; (...); Li, MY. Dual-Wideband Three-Stage   Doherty Power Amplifier Using Reciprocal Bias Configuration. IEEE   Transactions on Microwave Theory and Techniques, Early Access, Mar. 2025.

5) Zang,   YF; Shi, WM*; Liu, JT; Qi, T; Li, MY. Load Mismatch   Compensation of Load-Modulated Power Amplifiers: A Comprehensive Review.   ENERGIES, vol. 18, no. 9, 2157, Apr. 2025.

6) Liu, S ;   Pang, JZ*; (...); Li, MY; (...);. Highly-Efficient   Broadband GaAs HBT Doherty Power Amplifier With Harmonic Control Technique   for 5G Application. IEEE Transactions on Circuits and Systems II: Express   Briefs, vol. 72, no. 5, pp. 713-717, May. 2025.

7) Li, Y;   Shi, WM*; (...); Li, MY. Design of Symmetric Three-Stage   Doherty Power Amplifier Based on Piecewise Linear Current Profile. IEEE   Microwave and Wireless Components Letters, Early Access, May. 2025.

8) Liu, S ;   Zhang, Y; Pang, JZ*; (...); Li, MY. Analysis and Design of   Ultrawideband Generalized Asymmetrical Doherty Power Amplifier Using Hybrid   Voltage-Current Configuration. IEEE Transactions on Microwave Theory and   Techniques, Early Access, May. 2025.

9) Jiang,   MC ; Li, MY*; et al., A Low-Complexity Digital Predistortion   Technology and FPGA Implementation for Wide-Band Satellite Communication.   International Journal of Circuit Theory and Applications. Early Access, Jun.   2025.

10) Wang,   DZ ; Jin, Y*; (...); Li, MY. Constrained Adaptive Filtering Algorithms   Based on Arctangent Framework Against Impulsive Noise. IEEJ Transactions on   Electrical and Electronic Engineering. Early Access, Jul. 2025.

11) Liu,   JT; Shi, WM*; (...); Li, MY. Analysis and design of concurrent   class-F2 power amplifier based on power-series technique. AEU-International   Journal of Electronics and Communications, 2025(3), 193: 155722.

12) Hu, CY;   Shi, WM*; (...); Li, MY. Delta length extension of   non-commensurate transmission line combiner for dual-mode dual-band   outphasing power amplifier. AEU-International Journal of Electronics and   Communications, 2025(3), 192: 155695.

13) Liu, K;   Shi, WM*; (...); Li, MY. Broadband Doherty Power Amplifier with   baseband impedance control for concurrent application. AEU-International   Journal of Electronics and Communications, 2025(2), 191: 155680.

14) Jin, Y;   Xiao, KW; Dai ZJ*; (...); Li, MY. A new design method for   distributed Doherty power amplifier. AEU-International Journal of Electronics   and Communications, 2025(1), 189: 155618.

 

----2024-----

 

1) Li,   T; Li, MY*; (...); Cao, HL. Analysis and design of voltage-source   parallel resonant class E/F3 inverter. AEU-International Journal of   Electronics and Communications, 2024(12), 187: 155542.

2) Li, Y;   Shi, WM*; (...); Li, MY. Broadband equal-cell Doherty power   amplifier with extended back-off range based on asymmetrical voltage and   nonlinear current profiles. AEU-International Journal of Electronics and   Communications, 2024(12), 187: 155511.

3) Ren, M;   Gao, RB; Liu S; Li, MY; (...); Pang, JZ*. Design of Wideband   Doherty Power Amplifier Using Inverse Continuous Class-F Mode. IEEE   Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 9, pp.   4176-4180, Sep. 2024.

4) Shi,   WM*; Li, XL; (...); Li, MY. Design of Broadband Divisional   Load-Modulated Balanced Amplifier With Extended Dynamic Power Range. IEEE   Transactions on Microwave Theory and Techniques, vol. 72, no. 8, pp.   4638-4649, Aug. 2024.

5) Luo,   X; Li, MY*; (...); Shi, WM. A novel sparse behavioral model   design method based on the global representative point selection and the   randomized SVD algorithm. AEU-International Journal of Electronics and   Communications, 2024(10), 185: 155432.

6) Xu, CZ;   Su, M; (...); Li, MY*. Behavioral Modeling and Digital   Predistortion for Power Amplifier Based on the Sparse Smooth Twin Support   Vector Regression Method. IEEJ Transactions on Electrical and Electronic   Engineering. vol. 19, no. 9, pp. 1483-1491, Sep. 2024.

7) Lin, HH;   Liu, S; Shi WM;Dai ZJ; Li MY; Pang, JZ* . Analysis and design of   broadband Doherty power amplifier using parameterized load modulation network   and complex combining load. AEU-International Journal of Electronics and   Communications, 2024(5), 179: 155324.

8) Qian,   LL; Wang, HS; (...); Li MY; Hu, SD*. Optimized PNP ESD Protection   Device With Adjustable Trigger and Holding Voltages for High-Voltage   Applications. IEEE Transactions on Electron Devices. vol. 71, no. 6, pp.   3540-3545, Jun. 2024.

9) J. Wang,   Z. Dai*; (...); Li MY; Shi WM; Pang, JZ. Design of a Dual-band   Doherty Power Amplifier Using Single Loop Network[J]. IEEE Transactions on   Microwave Theory and Techniques, vol. 72, no. 10, pp. 5818-5829, Oct. 2024.

10) Kong,   SM; Dai, ZJ; (...); Li, MY*. Carrier frequency offset recovery   with I/Q imbalance using four-point interpolated DFT algorithm.   AEU-International Journal of Electronics and Communications, 2024(5), 178:   155153.

11) Zhong,   K; Dai, ZJ*; (...); Li, MY. Design of Dual-Band Doherty Power   Amplifier Using a New Phase Compensation Technique. IEEE Transactions on   Circuits and Systems II: Express Briefs, vol. 71, no. 4, pp. 1794-1798, Apr.   2024.

12) Dai,   ZJ*; Zhong, K; Li MY; Pang, JZ; Jin, Y. Broadband Dual-Input   Doherty Power Amplifier Design Based on a Simple Adaptive Power Dividing   Ratio Function. China Communications. vol. 21, no. 5, pp. 97-112, May. 2024.

13) Li, T; Li,   MY*; (...); Jin, Y. Analysis and design of voltage-source parallel   resonant class E frequency multiplier. International Journal of Circuit   Theory and Applications. vol. 52, no. 10, pp. 4903-4917, Oct. 2024.

14) Bai, G;   Dai, ZJ*; (...); Li, MY. Design of Broadband Doherty Power   Amplifier Based on Single Loop Load Modulation Network. IEEE Journal on   Emerging and Selected Topics in Circuits and Systems. vol. 14, no. 1, pp.   122-132, Mar. 2024.

15) Han,   YJ; Gao, RB; Liu. S; Li MY; (...); Pang, JZ*. Enhanced   Dual-Mode Reciprocal Doherty Power Amplifier Using Modified Combining Load   and Parameter Sweeping Analysis. IEEE Transactions on Circuits and Systems I:   Regular Papers, vol. 71, no. 7, pp. 3086-3097, Jul. 2024.

16) Pang,   JZ*; Han, YJ; Peng J; Li MY; et al.. Dual-Mode Three-Way   Doherty Power Amplifier With Extended High-Efficiency Range Against Load   Mismatch. IEEE Transactions on Microwave Theory and Techniques, vol. 72, no.   7, pp. 4058-4067, Jul. 2024.

17) Yao, Y;   Dai, ZJ*; Li, MY. A novel topology with controllable   wideband baseband impedance for power amplifiers. Frontiers of Information   Technology & Electronic Engineering. vol. 25, no. 2, pp. 308-315, Feb.   2024.

18) Z.   Dai*; S. Kong; (...); Li, MY. Design of Wideband Asymmetric   Doherty Power Amplifier Using a New Phase Compensation Technique. IEEE   Transactions on Circuits and Systems I: Regular Papers, vol. 71, no. 3, pp.   1093-1104, March 2024.

 

----2023-----

 

1) Yang,   RX; Shi, WM*; (...); Li, MY. Asymmetrical Sequential Load   Modulated Balanced Amplifier With Composited Impedance Inverter and   Reciprocal Mode for Broadband Applications. IEEE Transactions on Circuits and   Systems II: Express Briefs, vol. 70, no. 12, pp. 4374-4378, Dec. 2023.

2) Hu, CY;   Shi, WM*; (...); Li, MY. Design of Dual-Mode Dual-Band   Outphasing Power Amplifier Leveraging on Periodicity of Non-Commensurate   Transmission Line Combiner. IEEE Transactions on Circuits and Systems II:   Express Briefs, vol. 70, no. 12, pp. 4384-4388, Dec. 2023.

3) Jia, WY;   Kong, SM; Cai TF; Li MY*; et al.. Steady-State Performance   Analysis of the Arctangent LMS Algorithm With Gaussian Input. IEEE   Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 8, pp.   3189-3193, Aug. 2023.

4) Jin, Y;   Dai, ZJ*; (...); Li, MY. A Dual Load-Modulated Doherty Power   Amplifier Design Method for Improving Power Back-Off Efficiency. Sensors,   vol. 23, no. 14, pp.6598, Jul. 2023.

5) Liu, JT;   Shi, WM*; (...); Li, MY. Analysis and design of dual-input   Doherty power amplifier with enhanced efficiency for broadband application.   International Journal of Circuit Theory and Applications. vol. 51, no. 8, pp.   3557-3567, Aug. 2023.

6) Shi,   WM*; Li, XL; (...); Li, MY. Load Mismatch Compensation of   Doherty Power Amplifier Using Dual-Input and Mode Reconfiguration Techniques.   IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 7,   pp. 2774-2787, Jul. 2023.

7) Hu, XX;   Zhou, Y; (...); Li, MY*. A New Dual Mode Blind Equalization   Method Based on Neighborhood Symbol-Based Decision and Decision-Directed   Algorithm. IEEJ Transactions on Electrical and Electronic Engineering. vol.   18, no. 6, pp. 917-922, May. 2023.

8) Yao, Y;   Shi, WM; (...); Li, MY. Design of a Dual-Input Doherty Power   Amplifier With Selectable Output Port. IEEE Transactions on Circuits and   Systems II: Express Briefs, vol. 70, no. 4, pp. 1405-1409, Apr. 2023.

9) Jia, WY;   Feng, ZF; Cai TF; Li MY*. et al. Recursive Constrained Adaptive   Filtering Algorithm Based on Arctangent Framework. IEEE Transactions on   Circuits and Systems II: Express Briefs, vol. 70, no. 4, pp. 1650-1654, Apr.   2023.

10) Hu, CY;   Shi, WM*; (...); Li, MY. Design of an Outphasing Power   Amplifier Using Complex Combining Method for Broadband Application. IEEE   Microwave and Wireless Technology Letters, vol. 33, no. 4, pp. 443-446, Apr.   2023.

11) Li,   MY; Cheng, XB; et al.. A novel method for extending the output power   back-off range of an asymmetrical Doherty power amplifier. Frontiers of   Information Technology & Electronic Engineering. vol. 24, no. 3, pp.   470-479, Mar. 2023.

12) Hu, CY;   Yang, RX; Shi, WM*; (...); Li, MY. Analysis and Design of   Broadband Outphasing Power Amplifier Based on Complex Combining Impedance.   IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 4,   pp. 1542-1554, Apr. 2023.

13) Liu, S;   Pang, JZ*; (...); Li, MY. et al. Triple-Mode Reciprocal Doherty   Power Amplifier With Multi-Band Operation and Extended High Efficiency Range.   IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 5,   pp. 1928-1939, May. 2023.

14) Shi,   WM*; Li, XL; (...); Li, MY. Divisional Load-Modulated Balanced   Amplifier With Extended Dynamic Power Range. IEEE Transactions on Microwave   Theory and Techniques, vol. 71, no. 5, pp. 2286-2298, May. 2023.

15) Yao, Y;   Shi, WM*; (...); Li, MY. Design of a Dual-Input Dual-Output Power   Amplifier With Flexible Power Allocation. IEEE Microwave and Wireless   Components Letters, vol. 33, no. 2, pp.177-180, Feb. 2023.

16) 蒋卫恒,段耀星,李明玉*,.一种基于维度加权盲K近邻算法的数字预失真技术.电子与信息学报,   2023, 45(02): 446-454.

17) 代志江,孔淑曼,李明玉*,.基于改进的稀疏最小二乘双子支撑向量回归的数字预失真技术.电子与信息学报, 2023, 45(02): 418-426.

 

 

----2022-----

 

1) Li, T; Li,   MY; Dai ZJ*; et al.. Analysis and Design of Class-E-M Power Amplifier at   Subnominal Operation. IEEE Transactions on Circuits and Systems I: Regular   Papers, vol. 69, no. 12, pp. 5339-5352, Dec. 2021.

2) Li,   MY; Li, Q; et al., Design of ultra wideband power amplifier based on a   refining of exact harmonic impedance space. International Journal of Circuit   Theory and Applications. vol. 50, no. 10, pp. 3614-3625, Oct. 2022.

3) Wen, SL;   Wang, P*; (...); Li, MY. A Mixing Sequence Optimization Method   for Focused Compressed Sampling Based on Modulated Wideband Converter. IEEE   Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 12, pp.   4704-4708, Dec. 2022.

4) Qian,   LL; Li, MY; (...); Hu, SD*. A Novel Segmented LDMOS-SCR Structure   With 8-kV HBM ESD Robustness in CMOS Analog Multiplexer. IEEE Transactions on   Electron Devices. vol. 69, no. 12, pp. 6904-6909, Dec. 2022.

5) Ran, XB;   Dai, ZJ*; Li MY; et al.. A Wide-Band Passive Equalizer Design   Approach for Improving the Gain Flatness With Multiple Peaks. IEEE   Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp.   699-703, Mar. 2022.

6) Yao,   JB; Li, MY*; et al.. Analysis and Design of Class E Frequency   Multiplier With Shunt Linear and Nonlinear Capacitances at Any Duty Cycle.   IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3,   pp. 1827-1831, Mar. 2022.

18) Gao,   RB; Pang, JZ*; (...); Li MY; Zhu, AD. Dual-Band Three-Way   Doherty Power Amplifier Employing Dual-Mode Gate Bias and Load Compensation Network.   IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 4, pp.   2328-2340, Apr. 2022.

7) Pang, JZ*;   Chu, CH; (...); Li MY; et al.. Broadband GaN MMIC Doherty Power   Amplifier Using Continuous- Mode Combining for 5G Sub-6 GHz Applications. IEEE   Journal of Solid-State Circuits, vol. 57, no. 7, pp. 2143-2154, Jul. 2022.

 

----Before   2021----

 

1) Cai,   TF; Li, MY*; et al.. An improved nonlinear smooth twin support   vector regression based-behavioral model for joint compensation of   frequency-dependent transmitter nonlinearities. International Journal of RF   and Microwave Computer-Aided Engineering, vol. 31, no. 6, pp. e22636, Jun.   2021.

2) 蔡天赋李明玉*靳一,.基于Landweber迭代算法的欠采样恢复数字预失真技术[J].电子与信息学报,2021,43(11):3166-3173.

3) Yang,   ZX; Li, MY*; et al.. A Generalized High-Efficiency Broadband   Class-E/F-3 Power Amplifier Based on Design Space Expanding of Load Network.   IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 9, pp.   3732-3744, Sep. 2020.  

4) Dai, ZJ*;   Pang, JZ; Li, MY; et al.. A Direct Solving Approach for   High-Order Power Amplifier Matching Network Design. IEEE Transactions on   Microwave Theory and Techniques, vol. 68, no. 8, pp. 3278-3286, Aug. 2020.

5) Yao, Y;   Jin, Y; Feng ZF; Li, MY*; et al.. A simplified adaptive sparse   digital pre-distorter for joint mitigation of frequency-dependent transmitter   impairments. International Journal of RF and Microwave Computer- Aided   Engineering, vol. 30, no. 3, pp. e22056, Mar. 2020.

6) Jin, Y;   Dang, N; Yang GW; Li, MY*; et al.. A novel design method for   extending power back-off range of broadband Doherty power amplifier.   Microwave and Optical Technology Letters, vol. 61, no. 10, pp. 2420-2426,   Oct. 2019.

7) Yang,   ZX; Li, MY*; et al.. Design of Concurrent Dual-Band Continuous   Class-J Mode Doherty Power Amplifier With Precise Impedance Terminations.   IEEE Microwave and Wireless Components Letters, vol. 29, no. 5, pp. 348-350,   May. 2019.

8) Yang,   ZX; Yao Y; Li, MY*; et al.. Bandwidth Extension of Doherty Power   Amplifier Using Complex Combining Load With Noninfinity Peaking Impedance.   IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 2, pp.   765-777, Feb. 2019.

9) Y. Yao, MY.   Li*, et al, “Compressive Sensing Based Adaptive Sparse Predistorter   Design for Power Amplifier Linearization”, International Journal of Circuit   Theory and Applications, 2018; 46(4), 812-826.

10) Z.   Yang , MY. Li* , et al. Design of multioctave power   amplifiers based on high order resistive-reactive series of continuous modes.   Microwave and Optical Technology Letters, 2018, 60(5):1234-1238.

11) Z.   Yang, Y. Yao, Y. Jin, MY. Li*, et. al, Synthesizing and   Optimizing of Wide Stopband Low-Pass Filter with Improved Infinite   Attenuation Unit Based on Stubs, Frequenz, 72(11-12) • August 2018.

12) Y.   Yao, MY. Li* .et. al, Power Amplifier Behavioral Model   Adaptive Pruning Using Conjugate Gradient-Based Greedy Algorithm, IEEJ   Transactions on Electrical and Electronic Engineering. 2017; 12(S1):   S181–S182

13) M.Y.   Li* .et. al, "Sparsity Adaptive Estimation of Memory   Polynomial-Based Models for Power Amplifier Behavioral Modeling," IEEE   Microwave and Wireless Components Letters 2016. 5. 370-372.

14) MY.   Li*, et. al, A New Sparse Design Framework for Broadband Power Amplifier   Behavioral Modeling and Digital Predistortion, IEEJ transactions on   Electrical and Electronic Engineering. vol. 60, no. 5, pp. 532-541, Sep.   2014.

15) MY.   Li*, et. al, Complex-Chebyshev Functional Link Neural Network Behavioral   Model for Broadband Wireless Power Amplifiers, IEEE Transactions on Microwave   Theory and Techniques, vol.60, no. 6, pp. 1979–1989, Jun. 2012.

 

二. 专利:

1) 李明玉杨思琦邹瑜李鹏一种应用于LDO的抑制上冲和下冲的瞬态增强电路重庆市, CN119937708A[P]. 2025-05-06.

2) 李明玉邹瑜李鹏谭杰一种固定斜率的软启动电路重庆市, CN119298647A[P]. 2025-01-10.

3) 李明玉高弛廖望张瑞郭金良靳一一种基于时钟扩频调制信号发生器的时钟扩频调制电路重庆市, CN118971850A[P]. 2024-11-15.

4) 李明玉张瑞廖望高弛郭金良靳一一种提高隔离芯片的共模抗扰度的保护电路及数字隔离器重庆市, CN118944659A[P]. 2024-11-12.

5) 李鹏李明玉邹瑜郭金良叶嵩谭杰杨思琦李雪孙毛毛一种用于DCDC稳压器的短路恢复电路重庆市, CN117879339A[P]. 2024-04-12.

6) 李鹏李明玉谭杰邹瑜杨思琦叶嵩李雪孙毛毛一种用于实现于双N型调整管开关电源百分百占空比的电路重庆市,   CN117879347A[P]. 2024-04-12.

7) 李明玉林帅江史卫民胡春雨杨荣兴代志江庞竞舟一种多端口Doherty功率放大器重庆市, CN117478074A[P]. 2024-01-30.

8) 谭杰李鹏姚金波李明玉叶嵩一种超低温漂带隙基准电压分段补偿电路重庆市,   CN116719383A[P]. 2023-09-08.

9) 叶嵩姚金波李鹏李明玉谭杰陈雪一种新型带隙基准温度补偿电路(已授权): 重庆市,   CN115981406B[P]. 2025-01-28.

10) 李明玉王亮靳一徐常志代志江一种基于矢量量化的宽带数字预失真算法重庆市,   CN113468842A[P]. 2021-10-01.

11) 李明玉赖瑞文靳一徐常志代志江一种基于迭代学习控制和主曲线分析的数字预失真系统工作方法(已授权): 重庆市, CN113612455B[P]. 2024-01-26.

12) 李明玉王旭光徐常志靳一代志江一种基于Landweber迭代算法的欠采样数字预失真方法及系统重庆市, CN112202695A[P]. 2021-01-08.

13) 李明玉李青靳一代志江徐常志一种超宽带功率放大器偏置电路重庆市,   CN110581693A[P]. 2019-12-17.

14) 李明玉蔡振东靳一代志江徐常志一种复值流水线递归神经网络模型的功放预失真方法(已授权): 重庆市, CN110765720B[P]. 2024-05-24.